On the Probability Inequalities under Linearly Negatively Quadrant Dependent Condition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.

متن کامل

some probability inequalities for quadratic forms of negatively dependent subgaussian random variables

in this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. in particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.

متن کامل

Rosenthal’s Type Inequalities for Negatively Orthant Dependent Random Variables

In this paper, we obtain some Rosenthal’s type inequalities for negatively orthant dependent (NOD) random variables.

متن کامل

STRONG CONVERGENCE FOR m-PAIRWISE NEGATIVELY QUADRANT DEPENDENT RANDOM VARIABLES

Abstract. Complete convergence and the Marcinkiewicz-Zygmund strong law of large numbers for sequences of m-pairwise negatively quadrant dependent (m-PNQD) random variables is studied in this paper. The results obtained extend and improve the corresponding theorems of Choi and Sung ([4]) and Hu et al. ([9]). A version of the Kolmogorov strong law of large numbers for sequences of m-PNQD random ...

متن کامل

Probability and Moment Inequalities under Dependence

We establish Nagaev and Rosenthal-type inequalities for dependent random variables. The imposed dependence conditions, which are expressed in terms of functional dependence measures, are directly related to the physical mechanisms of the underlying processes and are easy to work with. Our results are applied to nonlinear time series and kernel density estimates of linear processes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications for Statistical Applications and Methods

سال: 2003

ISSN: 2287-7843

DOI: 10.5351/ckss.2003.10.2.545